Предвзятость искусственного интеллекта: часть 2
- Информация о материале
- Категория: ИТ статьи
- Опубликовано: 03.09.2019, 10:10
- Автор: HelpDesk
- Просмотров: 1047
В современности мы называем такого рода технологии чат-ботами. Тем, кто верит в их интеллектуальность, стоит напомнить, что эти программы не умнее Элизы. Вейценбаум наряду с Хьюбертом Дрейфусом и Джоном Серлем вошел в историю ИИ как один из основных критиков утверждений о возможности создания искусственного мозга и тем более искусственного сознания, сравнимого с человеческим по своим возможностям. В переведенной на русский язык в 1982 году книге «Возможности вычислительных машин и человеческий разум» Вейценбаум предупреждал об ошибочности отождествления естественного и искусственного разума, основываясь на сравнительном анализе фундаментальных представлений психологии и на наличии принципиальных различий между человеческим мышлением и информационными процессами в компьютере. А возвращаясь к AI bias заметим, что более тридцати лет назад Вейценбаум писал о том, что предвзятость программы может быть следствием ошибочно использованных данных и особенностей кода этой самой программы. Если код не тривиален, скажем, не формула записанная на Fortran, то такой код так или иначе отражает представления программиста о внешнем мире, поэтому не следует слепо доверять машинным результатам.
А в далеко не тривиальных по своей сложности приложениях глубинного обучения алгоритмическая пристрастность тем более возможна. Она возникает в тех случаях, когда система отражает внутренние ценности ее авторов, на этапах кодирования, сбора и селекции данных, используемых для тренировки алгоритмов.
Алгоритмическая пристрастность возникает не только вследствие имеющихся культурных, социальных и институциональных представлений, но и из-за возможных технических ограничений. Существование алгоритмической предвзятости находится в противоречии с интуитивным представлением, а в некоторых случаях с мистической убежденностью в объективности результатов, полученных в результате обработки данных на компьютере.
Хорошее введение в тематику, связанную с алгоритмическими пристрастностями, можно найти в статье The Foundations of Algorithmic Bias[9].
В статье «Вот почему возникают ИИ-привязанности и почему с ними сложно бороться», опубликованной в феврале 2019 года в MIT Review, выделяются три момента, способствующие возникновению AI bias. Однако, как не странно, их не связывают когнитивными предвзятостями, хотя нетрудно заметить, что в корне всех трех лежат именно они.
Постановка задачи (Framing the problem). Проблема состоит в том, что методами машинного обучения обычно хочется опередить нечто, не имеющее строгого определения. Скажем банк хочет определить кредитные качества заемщика, но это весьма размытое понятие и результат работы модели будет зависеть от того, как разработчики, в силу своих личных представлений, смогут это качество формализовать.
Сбор данных для обучения (Collecting the data). На данном этапе может быть два источника предвзятости: данные могут быть не репрезентативны или же могут содержать предрассудки. Известный прецедент, когда система лучше различала светлокожих по сравнению с темнокожими, был связан с тем, что в исходных данных светлокожих было больше. А не менее известная ошибка в автоматизированных рекрутинговых службах, которые отдавали предпочтения мужской половине, была связаны с тем, что они были обучены на данных, страдающих мужским шовинизмом.
Подготовка данных (Preparing the data). Когнитивная предвзятость может просочиться при выборе тех атрибутов, которые алгоритм будет использовать при оценке заемщика или кандидата на работу. Никто не может дать гарантии объективности избранного набора атрибутов.
Бороться с AI bias «в лоб» практически невозможно, в той же статье в MIT Review называются основные причины этого:
Нет понятных методов для исправления модели. Если, например, модель страдает гендерной предвзятостью, то недостаточно просто удалить слово «женщина», поскольку есть еще огромное количество гендерноориентированных слов. Как их все обнаружить?
Стандартные практики обучения и модели не принимают в расчет AI-bias.
Создатели моделей являются представителями определенных социальных групп, носителями тех или иных социальных взглядов, их самих объективизировать невозможно.
А главное, не удается понять, что такое объективность, поскольку компьютерные науки с этим явлением еще не сталкивались.
Какие же выводы можно сделать из факта существования феномена AI bias?
Вывод первый и самый простой – не верить тем, кого классик советской фантастики Кир Булычев называл птицами-говорунами, а читать классику, в данном случае работы Джозефа Вейценбаума, и к тому же Хьюберта Дрейфуса и Джона Серля. Очень способствует развитию трезвости сознания и пониманию роли человека в сложных системах.
Вывод второй, следующий из первого – системы, построенные на принципах глубинного обучения не обладают ИИ, это ни что иное, как новый и более сложный, чем программирование, способ использования компьютеров в качестве инструмента для анализа данных. Не исключено, что мощности современных и будущих компьютеров позволят предавать условия и методы решения задач еще в каких-то иных, отличных от программирование формах. Сегодня это обучение с учителем, а завтра могут быть и другие подходы к машинному обучению или что-то новое, более совершенное.
Вывод третий, возможно самый важный – компьютер был и будет инструментом для расширения интеллектуального потенциала человека, и главная задача заключается не в создании искусственного разума AI, а в развитии систем, которые называют Intelligence amplification (усиление интеллекта), Сognitive augmentation (когнитивное усиление) или Machine augmented intelligence (машинное усиление интеллекта). Этот путь хорошо и давно известен. Еще в 1945 году Ванневар Буш написал не устаревшую по сути программную статью «Как мы можем мыслить». Об усилении интеллекта писал великий кибернетик Уильям Росс Эшби. Человеко-компьютерному симбиозу посвятил свои работы Джозеф Ликлайдер, автор идеи Интернета. Практические подходы к усилению человеческого интеллекта (от мышки до основ человеко-машинного интерфейса) разработал Дуглас Энгельбарт. Эти первопроходцы наметили столбовую дорогу, по ней и следует идти. От популярных творцов ИИ их отличает то, что все задуманное ими успешно работает и составляет важную часть нашей жизни.
Вывод четвертый и последний. Обнаружение и анализ феномена AI bias позволяет утверждать, что никакой собственной предвзятостью искусственный интеллект в форме глубинного обучения не обладает, а некорректность, как обычно, объясняется человеческим фактором.